

TWS Bluetooth Earphone Charging Box SOC integrated with Qi wireless power reciever

1. Features

Discharge

- ♦ Output capacity: 5V/300mA
- Up to 93%@5V/150mA discharge efficiency of synchronous switch
- Built-in power path management supports charging and discharging at the same time

Charge

- Max 500mA linear charger, adjustable charging current
- Adjusts charging current automatically to adapt to different load capacity adapters
- ♦ Supports 4.20V, 4.30V 4.35V, 4.40V batteries
- Supports wireless power receiver compliant with Qi

Battery indicators

- Built-in 10bits ADC, accurate calculation of battery capacity
- ♦ Supports 4/3/2/1 LED battery indicator

Low-power dissipation

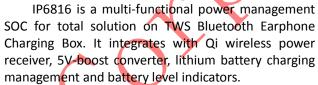
- Automatically detect earphone plugged-in/ plugged-out/charger-end, Automatically enter standby mode
- Support detection of earphone plug-in/plug-out independly
- Standby power consumption up to 25ua minimum

Simplified BOM

 Built-in power MOS, only a few peripheral devices are needed in the complete charging and discharging scheme

Multiple protection, high reliability

- Output: over current and short circuit protection
- Input: over voltage and Battery over charged protection
- ♦ Over temperature protection
- ♦ Vin pin can withstand up to 15V(transient voltage)
- ♦ ESD 4KV


In-depth customization

- ♦ Flexible and low-cost customized program
- Package: QFN16 (4*4*0.75mm)

2. Applications

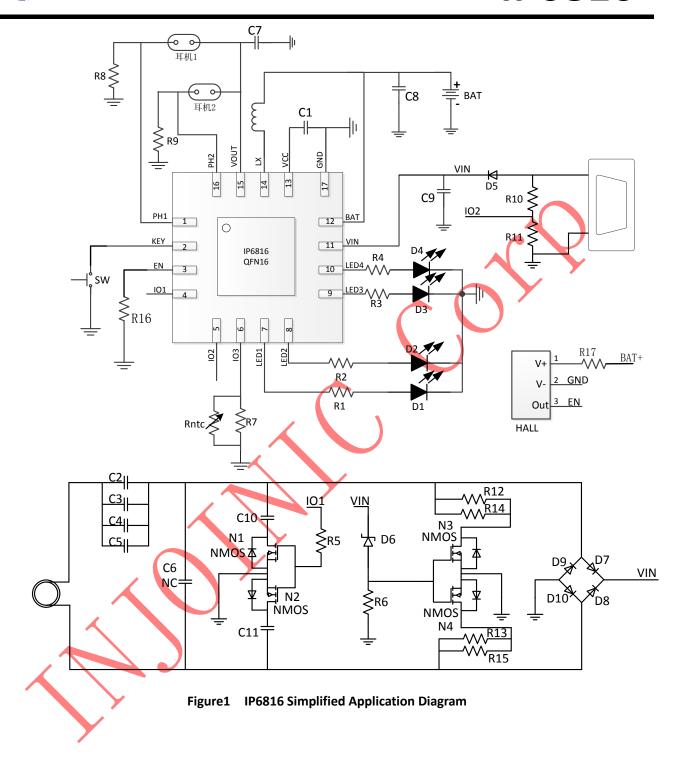
- TWS Bluetooth Earphone Charging Box
- Lithium Battery Portable Device

3. Description

IP6816 is highly integrated with abundant functions, which makes the total solution size minimized and BOM costed down.

The synchronous 5V-boost system of IP6816 provides rated 300mA output current with conversion efficiency up to 93%. DC-DC converter operates at 1.5MHz, and can support low-cost inductors and capacitors.

IP6816's linear charging system supplies max 500mA charging current. With the change of IC temperature and input voltage, IP6816 can automatically adjust the charging current.


IP6816 can detects the TWS earphone plug-in/plug-out in the Chargering Box independently. While the earphone is put in the Chargering Box, it enters the discharging mode automaticaly. When the earphone is fully charged, the Chargering Box automatically enters the sleep state, and the standby current can be reduced to 30uA. The earphone's charge-end current can be Flexible and customizable, such as 4mA or 8mA.

IP6816 can support 1/2/3/4 LED battery indicator, The built-in 10bits ADC can accurately calculate the Chargering Box's battery capacity.

IP6816 is packaged with QFN16(4*4*0.75mm).

4. Pin Definition

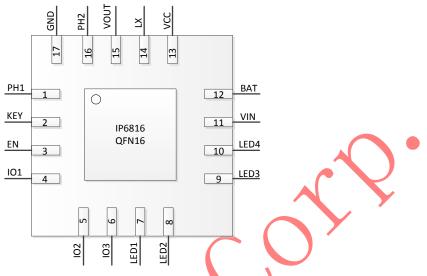


Figure 2 IP6816 Pin Assignments

Pin Num	Pin Name	Description
1	PH1	Earphone 1 negative
2	KEY	Key input
3	EN	HALL switch output signal , customization individually
4	I01	Wireless power reception control pin
5	102	Wired/wireless charging recognition pin
6	103	NTC pin
7	LED1	LED driver pin1
8	LED2	LED driver pin2
9	LED3	LED driver pin3
10	LED4	LED driver pin4
11	VIN	5V input pin
12	VBAT	Battery voltage positive pin
13	VCC	LDO output pin, connect to 2.2uF inductor
14	LΧ	DCDC switch node
15	VOUT	Boost output
16	PH2	Earphone 2 negative
17	GND	System ground

5. IP Series Products List

	IC Part No.	LED Node	Charging Current	Light-Load time	Key mode	Light-Load Current to enter standby	auto-wakeup supporting	always-5V supporting	Minimum order quantity
	IP5303T_ET_200MA	1/2	200mA	32 seconds	single start, double close	5nA	yes	no	4K
IP5303T series	IP5303T_ET_500MA	1/2	500mA	32 seconds	single start, double close	5mA	yes	no	4K
	IP5303T_500MA_S_NAT	1/2	500nA	32 seconds	single start, double close	5nA	no	no	4K
	IPS305T_BT	1/2/3/4	16	32 seconds	single start, double close	5mA	yes	no	4K
	IP5305T_BT_500MA	1/2/3/4	500mA	32 seconds	single start, double close	5mA	yes	no	4K
IP5305T series	IP5305T_BT_300MA	1/2/3/4	300sA	32 seconds	single start, double close	5mA	yes	no	4K
001100	1P5305T_BT_8S	1/2/3/4	16	8 seconds	single start, double close	5mA	yes	no	4K
	IP5305T_BT_8S_300MA	1/2/3/4	300mA	8 seconds	single start, double close	5mA	yes	no	4K
	IP5403_CK10_5M	- 4	500mA	36 seconds	single start, no key close	10mA	no	yes	4K
	IP5403 CK10 5M D1D2	1/2	500aA	36 seconds	single start, no key close	10mA	no	yes	4K
	IPS403_CK10_2M	4	200aA	36 seconds	single start, no key close	10mA	no	yes	4K
IP5403	IP5403_CK10_2M_D1D2	1/2	200sA	36 seconds	single start, no key close	10mA	no	yes	4K
series	IP5403 BT10 5M	4	500sA	36 seconds	single start, no key close	10mA	no	no	4K
	IP5403_BT10_5M_D1D2	1/2	500aA	36 seconds	single start, long close	10sA	no	no	4K
	IP5403_BT10_2M	4	200mA	36 seconds	single start, long close	10mA	no	no	4K
	IP5403_BT10_2#_D1D2	1/2	200mA	36 seconds	single start, long close	10mA	no	no	4K

6. Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage Range	V _{IN}	-0.3 ~ 15	V
Junction Temperature Range	T _J	-40 ~ 150	°C
Storage Temperature Range	Tstg	-60 ~ 150	°C
Thermal Resistance (Junction to Ambient)	θ_{JA}	50	°C/W
ESD (Human Body Model)	ESD	4	KV

^{*}Stresses beyond these listed parameter may cause permanent damage to the device.

Exposure to Absolute Maximum Rated conditions for extended periods may affect device reliability.

7. Recommended Operating Conditions

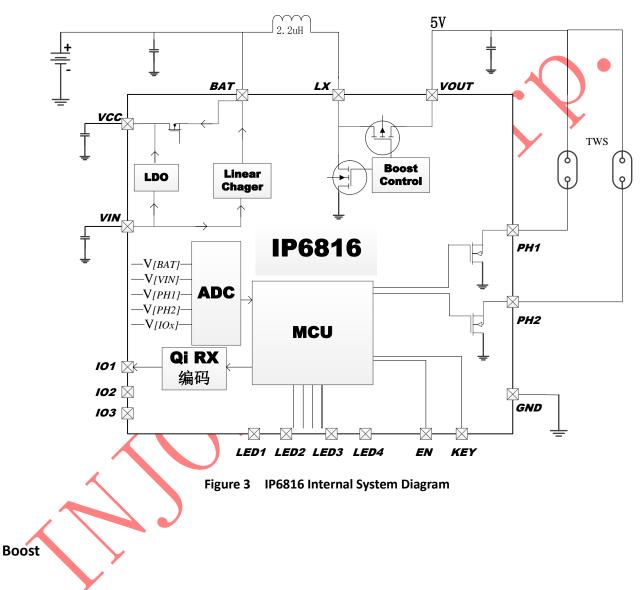
Parameter	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	V _{IN} , V _{BUS}	4.5	5	6.0	V
Operating Temperature	T _A	0		70	$^{\circ}$

^{*}Devices' performance cannot be guaranteed when working beyond those Recommended Operating Conditions.

8. Electrical Characteristics

Unless otherwise specified, TA=25 $^{\circ}$ C , L=1uH

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Charging System						
Input Voltage	V_{IN}	VBAT=3.7V	4.5	5	6.0	V
Input Over Voltage	V_{INOV}		10	12	15	V
VIN activation voltage	V_{INOk}		3.0	3.2	3.4	V
Input Under Voltage	V_{INUV}		4.0	4.2	4.4	V
	$CV_{4.2V}$	4.2V battery	4.15	4.20	4.24	V
Constant Charge Voltage	CV _{4.30V}	4.3V battery	4.28	4.30	4.34	V
Constant Charge Voltage	CV _{4.35V}	4.35V battery	4.33	4.35	4.4	V
	CV _{4.4V}	4.4V battery	4.38	4.40	4.44	V
Charge Stop Current	Ivin _{stop}	VIN=5V	10	15	20	mA
Charge Current	I _{VIN}	VIN=5V, VBAT=3.7V, Set the charge current=300mA	260	300	340	mA
Trickle Charge Current	I_{TRKL}	VIN=5v,BAT=2.7v	20	25	30	mA
Trickle Charge Stop Voltage	V_{TRKL}		2.9	3	3.1	V
Recharge Voltage Threshold	V_{RCH}		4.07	4.1	4.13	٧
Charge Cut-Off Time	T _{END}	7	20	24	28	Hours
Boost System						
BatteryOperation Voltage	V _{BAT}		3.0	3.7	4.4	>
Low Power Shutdown Voltage	V_{BATLOW}	IOUT=200mA	2.9	2.95	3.0	V
Switching battery input current	I _{BAT}	VBAT=3.7V,VOUT=5.0V, fs=1.5MHz(without LED indicator, VOUT without load)		4	6	mA
DC Output Voltage	V	VBAT=3.7V @0A	5.0	5.05	5.15	V
DC Output Voltage V _{OUT} V		VBAT=3.7V @200mA	4.75	5.00	5.15	V
Output Voltage Ripple	ΔV_{OUT}	VBAT=3.0V~4.4V	50	100	150	mV
Boost Output Current	I _{vout}	VBAT=3.0V~4.4V	0		300	mA
Boost Overcurrent Shut	I _{shut}	VBAT=3.0V~4.4V	0.7	0.8	0.9	Α


IP6816

Down Threshold						
Load Overcurrent Detect Time	T _{UVD}	Duration of output voltage under 4.2V		30		ms
Control System						
Switch Frequency	fs	Discharge switch frequency	1.3	1.5	1.6	MHz
PMOS On Resistance				450		mΩ
NMOS On Resistance	r _{DSON}			330		mΩ
Vcc Voltage	VCC	VCC = VBAT. (When no VBAT is connected, only VIN supplys power and the charger is disabled, then the VCC is 3.3V)	VBAT- 0.1	VBAT	VABT	V
Battery Input Standby Current	I _{STB1}	VIN=0V, VBAT=3.7V	20	27	35	uA
Battery Input Standby Current 2	I _{STB2}	VIN=0V,VBAT=3.7V,support hall switch	30	35	40	uA
IO Driving Current	I_{Gpio}		4	6	8	mA
Light Load Shut Down Detect Time	T_loadD	Load current less than 4mA	5	6	8	S
Light Load Shut Down Current	I _{plout}	VBAT=3.7V, The load current of both headphones must be less than iplout to shut down.	3	4	5	mA
Short Press On Key Wake Up Time	T _{OnDebou}	>	100		300	ms
Long Press On Key Wake Up Time	T _{Keylight}		2		3	S
Thermal Shut Down Temperature	Тотр	Rising temperature	130	140	150	$^{\circ}$
Thermal Shut Down Hysteresis	ΔT_{OTP}		30	40	50	$^{\circ}$

9. Function Description

System Diagram

IP6816 integrates a boost dc-dc converter with 5V/300mA output, 1.5MHz switching frequency. To avoid large rush current causing device failure, it is built in overcurrent, short circuit, overvoltage and over temperature protection function, ensuring the reliability and stability of system operation.

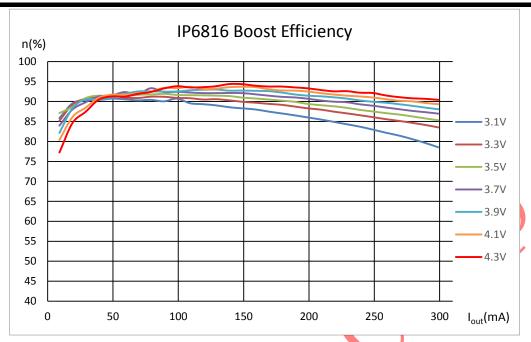


Figure 4 IP6816 Boost Efficiency Curve

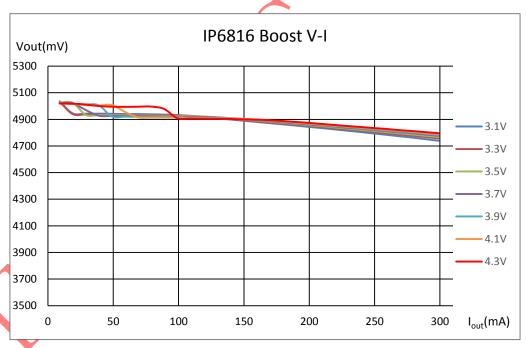


Figure 5 IP6816 Boost Output V-I Curve

Charge

IP6816 integrates a linear lithium battery charger. When the battery voltage is less than 3V, precharge with 0.1 CC; when the battery voltage is greater than 3V, enter constant current(CC) charging; when the battery voltage is close to 4.2V/4.3V/4.35V/4.4V, enter constant voltage charging. When the charging is accomplished, once the battery voltage falls under 4.1V, battery charging stage will be restarted.

IP6816 supports max 500mA charging, with change of the IC temperature and input voltage, IP6816 can

intelligently adjust charging current.

IP6816 can select the constant current charging current of the battery by connecting different resistors on the IO2 pin..

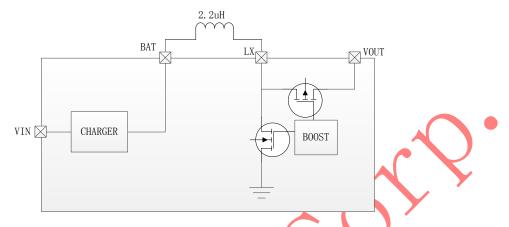


Figure 6 IP6816 Power Path Diagram

Qi wireless power receive charging

IP6816 supports the Qi protocol wireless charging reception function. The resonant capacitor of the wireless receiving function needs to be adjusted according to the coil inductance. Please contact INJOINIC Support Department directly.

When the device is wired charging and put on the wireless charging TX, the IP6816 preferentially uses wired charging, and the wireless charging receiving function is actively turned off.

Coulombmeter and battery level display

IP6816 has a built-in power algorithm, which can accurately display the remaining battery power according to the cell capacity.

IP6816 can support 1/2/3/4 LED battery indicator, and the system can automatically identify several LED modes.

LED light display mode

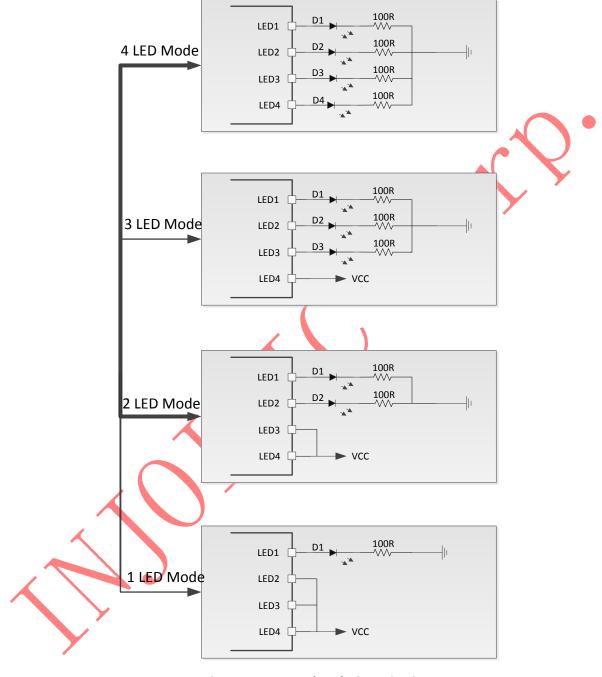


Figure 7 LED Mode Seleciton Circuit

■ 4 LED Mode

Discharge

Battery capacity(c)(%)	LED1	LED2	LED3	LED4
C≥75%	on	on	on	on

50%≤C<75%	on	on	on	off
25%≤C<50%	on	on	off	off
3%≤C<25%	on	off	off	off
0% <c<3%< td=""><td>1Hz blink</td><td>off</td><td>off</td><td>off</td></c<3%<>	1Hz blink	off	off	off

Charge

Battery capacity(c)(%)	LED1	LED2	LED3	LED4
full	on	on	on	on
75%≤C	on	on	on	0.5Hz blink
50%≤C<75%	on	on	0.5Hz blink	off
25%≤C<50%	on	0.5Hz blink	off	off
C<25%	0.5Hz blink	off	off	off

■ 3 LED Mode

Discharge

Battery capacity(c)(%)	LED1	LED2	LED3
C≥66%	on	on	on
33%≤C<66%	on	on	off
3%≤C<33%	on	off	off
0% <c<3%< td=""><td>1Hz blink</td><td>off</td><td>off</td></c<3%<>	1Hz blink	off	off

Charge

Battery capacity(c)(%)	LED1	LED2	LED3
75%≤C	on	on	on
66%≤C<100%	on	on	0.5Hz blink
33%≤C<66%	on	0.5Hz blink	off
C<33%	0.5Hz blink	off	off

2 LED Mode

	state	LED1	LED2
charge	charging	0.5Hz 闪烁	off
	full	on	off
discharge	ischarge dischareging		on
	low	off	1Hz blink

■ 1 LED Mode

	state	LED1	
charge	charging	0.5Hz blink	
	full	on	
discharge	dischareging	on	
	low	1Hz blink	

NTC

IP6816 support NTC function used for battery temperature detection. NTC pin outputs 20uA current then detects the voltage on NTC resistance to determine the present battery temperature.

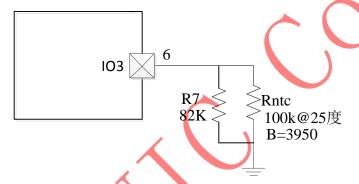


Figure 8 NTC circuit

Under charging state:

Voltage on NTC resistance is higher than 1.3V meaning the battery temperature is under 0 centigrade, then stop charging the battery;

Voltage on NTC resistance is lower than 0.5V meaning the battery temperature is above 50 centigrade, then stop charging the battery;

Under discharging state:

Voltage on NTC resistance is higher than 1.47V meaning the battery temperature is under -15 centigrade, stop discharging;

Voltage on NTC resistance is lower than 0.44V meaning the battery temperature is above 55 centigrade, stop discharging.

If NTC function is not required in the scheme, the IO3 pin shall be connected 51K to GND. IO3 pin shall not float, otherwise abnormal charging and discharging may be caused.

plug-in/plug-out detection

Once detecting the insertion of the earphone, the IP6816 wakes up from the standby mode and turns on the boost 5V to charge the earphone, eliminating the button operation and supporting the buttonless mold solution. The IP6816 supports light-load auto standby function. When the earphone's load current on PH1 and PH2 are less than 4mA for 16 seconds, IP6816 will automatically enter standby mode. In the standby mode, the VOUT pin voltage has three configurations: 5V, VBAT, and 2.4V. The standard standby VOUT output voltage is 2.4V, and other

specifications need to be customized separately.

When the earphones are charged end, the IP6816 will enter standby mode and the VOUT output will change to 2.4V. In this case,in order to make the earphones also enter power-saved mode, You need to adjust the resistance R8/R9 on PH1/PH2. Taking PH1 as an example, the adjustment method is as follows:

- 1. R8 default resistance is 100K
- 2. If IP6816 can enters standby mode , but the earphone cannot enter the standby mode, then gradually reduce the R8.
- 3. If IP6816 can enters standby , but it can not be waked up by the earphone's plug-in, then gradually increase the R8.
- 4. Repeat steps 2/3 until you find a suitable resistor R8, which makes IP6816 can enter standby mode, and the earphone can enter stanby mode, and IP6816 can be waked up by the plug-in of earphone.

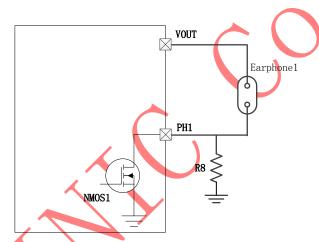
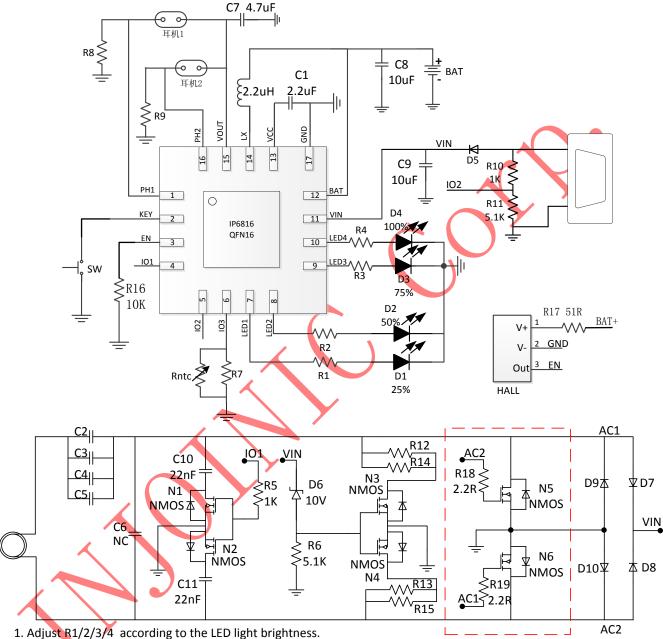
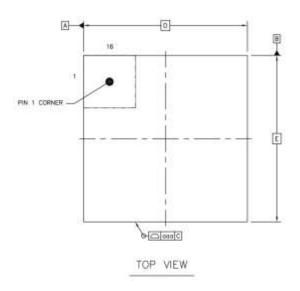
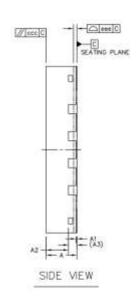
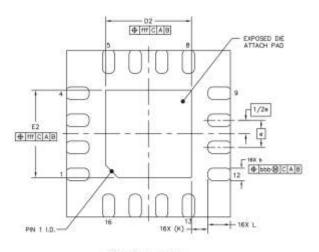



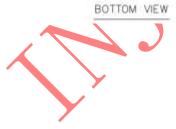
Figure9 IP6816 Earphone Standby Resistance Adjustment Diagram

10. Typical Application Diagram




- 2. When NTC function is supported, R7=82K, Rntc=100K@25°C, B=3950. When NTC function is not supported, R7=51K, Rntc is floating.
- 3. Please adjust R8/R9 according to different Bluetooth earphone solutions
- 4. N1/N2/N3/N4 are withstand voltage 20V NMOS, transient current maximum 5A, constant current 1A
- 5. D5/D7/D8/D9/D10 are Schottky diode, constant current 1A
- 6. D6 is 10V Zener Diode
- 7. C2/C3/C4/C5 value should be according to different coil inductance values
- 8. R12/R14/R13/R15 value should be according to different coil inductance values
- 9. If Hall element is supported, R16 requires NC
- 10. The D9/D10 can be replaced with NMOS (N5/N6) in the red dashed box to improve wireless charging efficiency and reduce heat


IP6816 Typical Application Diagram


11.Package

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		A	0,7	0.75	0.8
STAND OFF		A1	0	0.02	0.05
MOLD THICKNESS		A2		0.55	
L/F THICKNESS		A.3	0.203 REF		
LEAD WIDTH		b	0.25	0.3	0.35
BOOY SIZE	×	D	4 89C		
	Y	E	4 BSC		
LEAD PITCH		-6	0.65 BSC		
EP SIZE	×	D2	2	2.1	2.2
	Y	E2	2	2.1	2.2
LEAD LENGTH		1	0.45	0.55	0.65
LEAD TIP TO EXPOSED PAD EDGE		∴K :	0.4 REF		
PACKAGE EDGE TOLERANCE		000	0.1		
MOLD FLATNESS		ccc	0.1		
COPLANARITY		***	0.08		
LEAD OFFSET		bbb	0.1		
EXPOSED PAD OFFSET		111	0.1		
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	F			193	

Email: service@injoinic.com

12. Mark description

Note:

- 1. **(** ——Injoinic Logo
- 2. IP6816 ——Part Number
- 3, LLLLLLL——Manufacture number
- 4、 ——Pin1 location

IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.