

Support PD3.0 and other fast charge input protocol, support 2~6 series batteries

Integrated buck-boost power Nmos, Charging management chip with a maximum charging power of 45W

1 Features

Charging specifications

- ♦ Integrated BUCK-BOOST, power NMOS
- ♦ Maximum charging power 45W
- ♦ Adaptive charging current adjustment
- External resistor can set full voltage, The full voltage of a single lithium battery can be set in 3.65V/4.1V/4.2V/4.35V/4.4V
- External resistance selection 2/3/4/5/6 series battery cell charging
- External resistor can set maximum charging power, maximum support 45W

Supports two USB ports

- ♦ 1 USB-A port output
- ♦ 1 USB-C port input and output

Quick charge specifications

- ♦ Integrated FCP input fast charge protocol
- ♦ Integrated AFC input fast charge protocol
- Integrated DRP Try. SRC agreement, quick charge agreement PD3.1 input and output
- Integrated QC2.0/QC3.0/QC3.0+ output fast charge protocol
- supports 0V battery charging

Power display

- ♦ Customization supports the I2C function
- ♦ Standby Power Loss 100µA
- ♦ EN waking function

Multiple protection, high reliability

- ♦ Input over-voltage and under-voltage protection
- ♦ Output over-current and short-circuit protection
- Battery overcharge, over-discharge, over-current protection
- ♦ IC over temperature protection
- Rechargeable battery temperature NTC protection
- ♦ ESD 4KV, input (CC1/CC2 pin) Withstand voltage 30V
- Package: QFNWB-7*7-60L 0.4pitch

2 Application Products

2~6 series lithium battery/lithium iron phosphate battery charge and discharge

3 Overview

IP2369 is a lithium battery charging and discharging management chip integrating AFC/FCP/PD2.0/ PD3.0/PD3.1 input/output fast charging protocols and synchronous voltage converter, with charging and discharging power up to 45W.

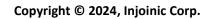
IP2369 has high integration and rich functions, Integrated BUCK-BOOST boost power NMOS, only one inductor is needed to realize synchronous voltage reduction and boost function, and only few peripheral devices are needed in application, which effectively reduces the overall solution size and BOM cost.

IP2369 supports 2/3/4/5/6 series cells and the number of series cells can be selected by external resistance Settings. The IP2369 supports an external resistor with configurable battery type and a full voltage of 3.65V/4.1V/4.2V/ 4.35V/4.4V.

IP2369 Built-in IC temperature, battery NTC temperature and input voltage control detection loop, can be identified according to the charger power, intelligent regulation of charging current.

The standby power consumption of the IP2369 can be as low as 100uA.

IP2369 built-in 14bit ADC, can accurately measure input voltage and current, battery voltage and current, etc. The charging and discharging voltage and charging current of IP2369 can be obtained through I2C.


The IP2369 supports four power indicators, which can display the power and charging and discharging status.

1/29

Contents

1 Features	
2 Application Products	1
3 Overview	1
4 Record	3
5 Simplified application	2
6 Pin Description	
6.1 Pin description	f
7 Internal block diagram of the chip	
8 Limit parameters	
9 Recommended working conditions	<u>c</u>
10 Electrical characteristics	10
11 Function description	14
11.1 Charging function	14
11.2 Discharge function	16
11.3.1 Standby & Light Load Shutdown	17
11.3.2 Discharge	17
11.3.3 Charging	18
11.3.4 Charging while discharging	18
11.4 Input and output maximum power setting	19
11.5 Set the number of batteries in series	19
11.6 Battery type setting	19
11.7 NTC function	20
11.8 Lamp display function	22
11.9 EN key function	24
12 Application schematic diagram	25
13 BOM	26
14 Package	27
15 Silkscreen	28
16 IMPORTANT NOTICE	29

4 Record

Note: The page numbers of previous versions may be different from those of the current version. Change page numbers for version V1.26to V1.27(August 2024) **Page** Improve the PDO of low power mode in the discharge function......17 Change page numbers for version V1.25to V1.26(August 2024) **Page** Modify the limit parameters of pins such as BAT/BST/LX..... ..9 Modify electrical characteristics such as input overvoltage..... Change page numbers for version V1.24to V1.25(June 2024) Page Charging function Added 0V battery charging description..... Change page numbers for version V1.23to V1.24(May 2024) Page Pin definition and pin description Synchronous demo schematic..... Change page numbers for version V1.22to V1.23(April 2024) Page Pin definition and pin description Synchronous demo schematic....... Change page numbers for version V1.21to V1.22(May 2024) Pin definition and pin description Synchronous demo schematic......5 Change page numbers for version V1.20to V1.21(May 2024) Modify electrical characteristics charging current, ripple and other parameters......10 Change page numbers for version V1.11 to V1.20 (May 2024) The correction pins define pins 28 and 31, as per the demo schematic......5 Change page numbers for version V1.10 to V1.11 (March 2024) Page Added the description of discharge NTC parameters......17 Change page numbers for version V1.00 to V1.10 (March 2024) Added A 10uF capacitor at port A of the schematic diagram......22 First release V1.00 (February 2024)

5 Simplified application

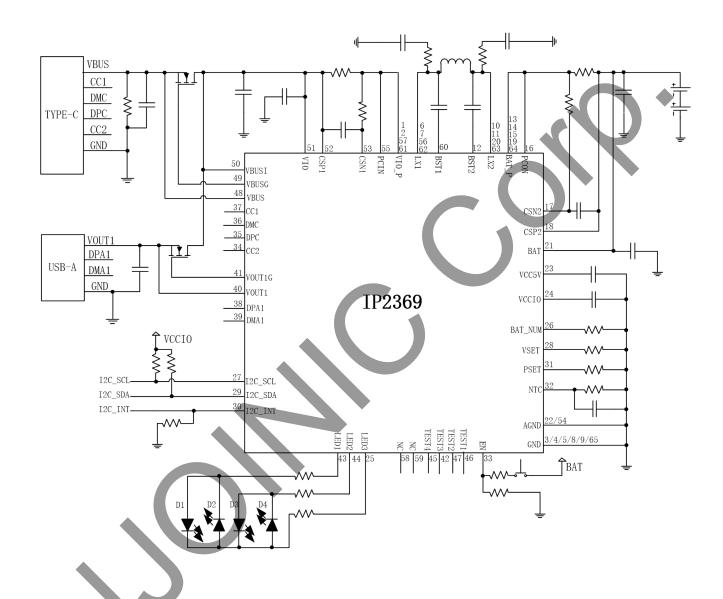


Figure 1 IP2369 Simplified application

6 Pin Description

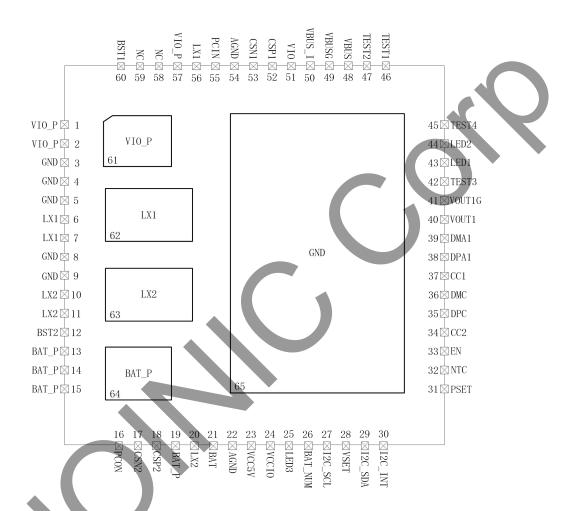


Figure 2 IP2369 pin diagram

6.1 Pin description

Pin Num	Pin Name	Definition		
1	VIO_P	VIO terminal power pin		
2	VIO_P	VIO terminal power pin		
3	GND	GND of the power path		
4	GND	GND of the power path		
5	GND	GND of the power path		
6	LX1	VIO terminal inductance connection pin		
7	LX1	VIO terminal inductance connection pin		
8	GND	GND of the power path		
9	GND	GND of the power path		
10	LX2	Battery terminal inductance connection pin		
11	LX2	Battery terminal inductance connection pin		
12	BST2	Bootstrap voltage pin of H-bridge power tube battery terminal		
13	BAT_P	Battery terminal power pin		
14	BAT_P	Battery terminal power pin		
15	BAT_P	Battery terminal power pin		
16	PCON	Battery peak current sampling pin		
17	CSN2	Average battery current sampling negative terminal		
18	CSP2	Battery terminal current sampling positive terminal		
19	BAT_P	Battery terminal power pin		
20	LX2	Battery terminal inductance connection pin		
21	BAT	Battery side power supply pin		
22	AGND	Analog ground		
23	VCC5V	System 5V power supply, to supply power to the internal analog circuit of the IC		
24	VCCIO	System 3.3V power supply, to supply power to the internal digital circuit of the IC		
25	LED3	Lamp display pin LED3		
26	BAT_NUM	BAT_NUM Set the number of batteries in series and connect the resistance to the ground		
27	I2C_SCL	The I2C model serves as the I2C_SCL		
28	VSET	VSET Set a single battery charging voltage, connect resistance to the ground		
29	I2C_SDA	The I2C model serves as the I2C_SDA		
30	I2C_INT	The I2C model serves as the I2C_INT		
31	PSET	PSET Set the maximum charge and discharge power of the system and connect the resistance to the ground		

	32	NTC	NTC set protection temperature, connected with NTC resistor
	33	EN	EN wake up pin, connected to the key to realize startup wake up and shutdown
	34	CC2	USB C port detection and fast charge communication pin CC2
	35	DPC	USB C port fast charge and intelligent recognition of DP
	36	DMC	USB C port fast charge and intelligent identification DM
	37	CC1	USB C port detection and fast charge communication pin CC1
	38	DPA1	USB A port fast charge and intelligent recognition of DP
	39	DMA1	USB C port fast charge and intelligent identification DM
	40	VOUT1	Port A outputs the detection pin
	41	VOUT1G	Port A output path NMOS control pin
	42	TEST3	Test point,NC
	43	LED1	Lamp display pin LED1
	44	LED2	Lamp display pin LED2
	45	TEST4	Test point,NC
	46	TEST1	Test point,NC
	47	TEST2	Test point, NC
	48	VBUS	VBUS input detection pin
	49	VBUSG	VBUS input path NMOS control pin
	50	VBUS_I	VBUS input path current detection pin
	51	VIO	Power input pin
	52	CSP1	Input current sampling positive terminal
	53	CSN1	Input current sampling negative terminal
	54	AGND	Analog ground
	55	PCIN	Input peak current sampling pin
	56	LX1	VIO terminal inductance connection pin
	57	VIO_P	VIO terminal power pin
F	58	NC	
	59	NC	
	60	BST1	Bootstrap voltage pin of H-bridge power tube input terminal
	61	VIO_P	VIO terminal power pin
	62	LX1	VIO terminal inductance connection pin
	63	LX2	Battery terminal inductance connection pin
	64	BAT_P	Battery terminal power pin
	65	GND	GND of the power path

7 Internal block diagram of the chip

Figure 3 Internal block diagram of the chip

8 Limit parameters

Parameter	Symbol	Value	Unit
BAT voltage range	V_{BAT}	-0.3 ~ 32	V
VBUS voltage range	V _{VBUS}	-0.3 ~ 30	V
VIO voltage range	V _{VIO}	-0.3 ~ 30	V
LX1/BST1/LX2/BST2	V _{LX1/BST1/LX2/BST2}	(-3V for 10ns) -0.3 ~ 40	V
voltage range	V LX1/BST1/LX2/BST2	(-37 101 10118) -0.3 - 40	
CSP2/CSN2/PCIN	Vcsp2/csn2/pcin	-0.3 ~ 32	V
voltage range	V CSP2/CSN2/PCIN	-0.3 1 32	v
CSP1/CSN1/PCON	Vcsp1/csn1/pcon	-0.3 ~ 30	V
voltage range	V CSP1/CSN1/PCON	-0.3 - 30	V
CC1/CC2	V _{CC1/CC2}	-0.3 ~ 30	v
voltage range	V CC1/CC2	-0.3 - 30	V
DMC/DPC	V _{DMC/DPC}	-0.3 ~ 22	v
voltage range	▼ DMC/DPC	-0.3 22	•
Other pins voltage range	V _{LED/EN/TEST/PSET}	-0.3 ~ 8	V
I2C Interface voltage range	V _{I2C_INT/SDA/SCL}	-0.3~8	V
Junction temperature range	TJ	-40 ~ 125	°C
Storage temperature range	Tstg	-60 ~ 150	C
Thermal resistance (junction	0.	45	°C/W
temperature to environment)	θја	45	CIVV
Human Body Model (HBM)	ESD	4	KV

^{*}Stresses higher than the values listed in the Absolute Maximum Ratings section may cause permanent damage to the device. Excessive exposure under any absolute maximum rating conditions may affect the reliability and service life of the device.

9 Recommended working conditions

Parameter	Symbol	Min	Typical	Max	Unit
Input voltage	VBUS/VOUT1	4.5		22	V
battery voltage	VBAT			30	V
Working temperature	TA	-40		85	$^{\circ}$

^{*}Beyond these operating conditions, device operating characteristics cannot be guaranteed.

10 Electrical characteristics

Unless otherwise specified, TA=25℃, L=10uH

Parameter	Symbol	Test Co	nditions	Min	Typical	Max	Unit
Charging syst	Charging system						
Input voltage	V_{BUS}			4.5	5/9/12/15/ 20	22	V
Input over-voltage	V_{BUS}	Rising voltage		21.5	22	22.5	V
Peak current	I _{L_PK}	Inductance peak cu	ırrent limit			12	Α
Trickle		V _{VBUS} =5V, V _{BAT} <2.5	5V	30	50	70	mA
charge current	I _{TRKL}	V _{VBUS} =5V, 2.5V<=V	BAT <vtrkl< td=""><td>100</td><td>200</td><td>300</td><td>mA</td></vtrkl<>	100	200	300	mA
Trickle cut-off	V_{TRKL}	The number of batte V _{TRGT} is not 3.65V		N*2.9	N*3	N*3.1	V
voltage	FINAL	The number of batte V _{TRGT} is 3.65V	eries is N,	N*2.7	N*2.75	N*2.85	V
		The number of batte	eries is N,	N*4.35	N*4.40	N*4.45	V
		The number of batte	eries is N,	N*4.20	N*4.35	N*4.40	V
Charge		The number of batte	eries is N,	N*4.25	N*4.30	N*4.35	V
constant voltage	V _{CV}	The number of batte	eries is N,	N*4.15	N*4.20	N*4.25	V
		The number of batte	eries is N,	N*4.05	N*4.10	N*4.15	٧
	The number of batto	eries is N,	N*3.6	N*3.65	N*3.7	V	
		VBUS=5V,input c	urrent	2.7	3.0	3.3	Α
		VBUS=9V, PD fast charge,	PMAX=20W	2.00	2.22	2.44	Α
		Input current	PMAX>=27W	2.70	3.00	3.30	Α
Charge current	I _{CHRG}	VBUS=9V, Not PD fast charge, Input current	PMAX>=20W	1.80	2.00	2.20	А
		\/DLIQ 40\/ DD	PMAX=20W	1.50	1.67	1.84	Α
		VBUS=12V, PD	PMAX=27W	2.03	2.25	2.47	Α
		fast charge, Input current	PMAX=30W	2.25	2.50	2.75	Α
		Input current	PMAX>=36W	2.70	3.00	3.30	Α
		VBUS=12V, Not	PMAX>=20W	1.35	1.50	1.65	Α

IP2369

							_
		PD fast charge,					
		Input current					
			PMAX=20W	1.12	1.25	1.37	Α
		VBUS =15V, PD	PMAX=27W	1.53	1.70	1.87	Α
		and not PD, input	PMAX=30W	1.71	1.90	2.09	Α
		current	PMAX=36W	2.07	2.30	2.53	Α
			PMAX=45W	2.56	2.85	3.13	Α
			PMAX=20W	0.85	0.95	1.04	A
		VBUS =20V, PD	PMAX=27W	1.15	1.28	1.40	A
		and not PD, input	PMAX=30W	1.28	1.43	1.57	Α
		current	PMAX=36W	1.53	1.70	1.87	Α
			PMAX=45W	1.92	2.14	2.35	А
Stop							
charging	I _{STOP}				100		mA
current							
Recharge	V_{RCH}	The number of batte	ary colle ie N		V _{TRGT} –		V
threshold	V RCH	The number of batte	ery cells is iv		N*0.1		_ v
Charging	T_{END}				48		Hour
timeout	I END				40		lioui
Discharge sys	tem						
Battery							
working	V_{BAT}	The number of batte	ery cells is N	N*2.70		N*4.45	V
voltage							
Switch		VBAT=6*3.7V,					
working	I _{BAT}	VOUT=5.0V,			12		mA
battery input	IBAI	fs=250kHz, lout=0m	nΑ		12		''''
current							
	QC2.0	V _{оит} =5V@1A		4.75	5.00	5.25	V
	Vout	V _{OUT} =9V@1A		8.70	9	9.30	V
	1001	V _{оит} =12V@1A		11.60	12	12.40	V
	QC3.0/						
DC output	QC3+	@1A		3.6		12	V
voltage	V_{OUT}						
	QC3.0				200		mV
	Step				200		1117
	QC3+				20		mV
	Step				20		''' V
Output	ΔV_{OUT}	VBAT=4*3.7V,	VOUT=5.0V,		85		mV
voltage ripple	△V ∪∪	fs=250KHz, lout=1A	\				''' '
		VBAT=4*3.7V,	VOUT=9.0V ,		100		mV

IP2369

		fs=250KHz, lout=1A				
		VBAT=4*3.7V,				
		VOUT=12V,fs=250KHz, lout=1A		100		mV
		VBAT=4*3.7V,				
		VOUT=15V,fs=250KHz, lout=1A		100		mV
		VBAT=4*3.7V,		400		,,
		VOUT=20V,fs=250KHz, lout=1A		120		mV
		VBAT=4*3.7V, VOUT=5.0V,		000		
		fs=250KHz, lout=1A		200		mV
Maximum output power of the discharge system	Pmax	PD protocol			45	W
Discharge		V _{BAT} =2*3.0V, V _{OUT} =20V, I _{OUT} =1.5A		92.0		%
Discharge system efficiency	η_{out}	V _{BAT} =4*3.0V, V _{OUT} =20V, I _{OUT} =1.5A		95.0		%
Cinciency		V _{BAT} =6*3.0V, V _{OUT} =20V, I _{OUT} =1.5A		96.0		%
		VBAT=N*3.7V, output 5V	3.0	3.3	3.6	Α
Output	ı	VBAT= N*3.7V, output 9V not PD protocol	2.4	2.7	3.0	А
shutdown current	I _{shut}	VBAT= N*3.7V, output 12V, not PD protocol	1.8	2.0	2.2	Α
		VBAT= N*3.7V, output PD protocol		PDO * 1.1		Α
Output overcurrent detection time	TUVP	output voltage is continuously lower than 2.4V		30		ms
Output short detection time	Тоср	output voltage is continuously lower than 2.2V		40		μs
Control Syster	m					
Fraguera	fo	Discharge switching frequency		250		kHz
Frequency	fs	Charging switching frequency		250		kHz
VCC5V output voltage	V _{CC5V}		4.75	5	5.25	V
VCC5V output					30	mA

IP2369

current						
VCCIO						
output	V _{CCIO}		3.15	3.3	3.45	V
voltage						
VCCIO						
output	I _{CCIO}				30	mA
current						
standby	I _{STB}	VBAT=22V, Average current after one		80	100	ψA
current	פופי	minute shutdown		00		μ, τ
LED Pin drive	I _{L1}					
current	I_{L2}	Voltage drop 10%	5	7	10	mA
	I _{L3}					
Thermal						
shutdown	T_{OTP}	Rising temperature	110	125	140	$^{\circ}$ C
temperature						
Thermal		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
shutdown	ΔT_{OTP}			40		$^{\circ}$
temperature	Δ 101F			10		
hysteresis						
Resistance						
H-bridge						
power mos	$R_{DS(ON)}$	V _{GS} =4.5V, I _D =5A		7	10	mΩ
on-impedanc						
е						

11 Function description

11.1 Charging function

The IP2369 has a constant-current, constant-voltage lithium battery charge management system that supports a synchronous voltage switch structure.

IP2369 adopts switching charging technology with switching frequency of 250kHz.

IP2369 resistance can be set in different cell types, full of charging voltage and power, can support 2/3/4/5/6 / battery set, can support full voltage of 3.65 V / 4.1 V / 4.2 V / 4.3 V / 4.35 V / 4.4 V the different types of batteries; The maximum input charging power can reach 20V/2.25A(45W), the highest charging efficiency to 96%;

IP2369 supports the trickle-constant-current-constant-voltage charging process:

When the battery voltage 0≤ VBAT≤ 2.5V, small current trickle charging, battery charging current about 50mA;

When the battery voltage is 2.5V <VBAT≤ VTRKL, trickle charging, battery charging current is about 200mA;

When the battery voltage VTRKL<VBAT< VCV, for constant current charging, according to the set constant current charging current to charge the battery;

When the battery voltage VBAT = VCV, the battery voltage rises to close to full voltage, the charging current will slowly decline and enter the constant voltage charging.

After entering constant voltage charging, when the battery charging current is less than ISTOP and the battery voltage is close to constant voltage, stop charging and enter full state.

After the battery is fully charged, it continues to check the battery voltage. When the battery voltage is lower than VBAT <VRCH, it starts charging again;

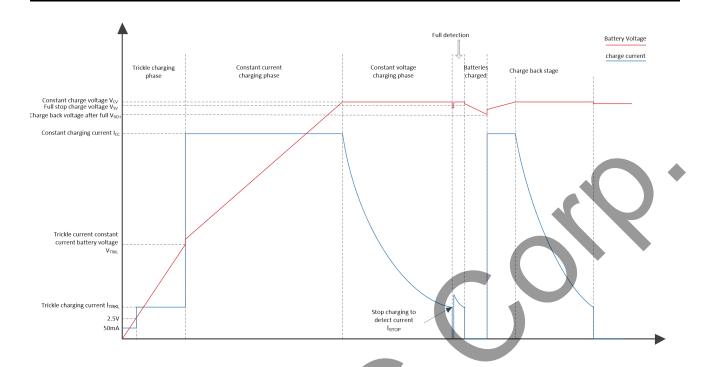


Figure 4 Battery charging process diagram

IP2369 integration has an AFC/FCP/PD2.0 PD3.0 / PD3.1 input quick charge agreement, can through the Type - C mouth of DPC/DMC/CC1 / CC2 to fast was electrical application fast charging pressure, automatically adjust the charging current size, to adapt to different load capacity of the charger.

When charging with a charger without a fast charge or a DC power supply, the IP2369 sets the charging current according to the input voltage:

Input voltage	Maximum input current for constant current charging
4.5 <vbus≤6.5v< td=""><td>3A</td></vbus≤6.5v<>	3A
6.5 <vbus≤9.5v< td=""><td>2A</td></vbus≤9.5v<>	2A
9.5 <vbus≤13.5v< td=""><td>1.5A</td></vbus≤13.5v<>	1.5A
13.5 <vbus≤16.5v< td=""><td>3A</td></vbus≤16.5v<>	3A
16.5 <vbus≤24v< td=""><td>2.25A</td></vbus≤24v<>	2.25A

Note: When the actual charging power is greater than the set maximum input power limit, the charging current will also be reduced;

IP2369 supports Huawei FCP and Samsung AFC fast charge input protocol, when using Huawei FCP and Samsung AFC charger input charging, IP2369 will apply for the highest input voltage, constant current charging current is set according to the above input voltage gear;

IP2369 supports PD2.0/PD3.0/PD3.1 input protocol. When charging with PD fast charge adapter, IP2369 will read the PD information packet sent by the adapter, and then apply for charging voltage and set charging current according to the received PD information packet. When the power of the received PD packet is less than the set power required for charging, the charging current will be actively reduced so that the maximum power of the input terminal is less than or equal to the PD broadcast power given by the adapter:

11.2 Discharge function

IP2369 integrates USB Type_C input and output recognition interface, automatically switches the built-in pull-down resistor, and automatically identifies the charge and discharge properties of the inserted device. With the Try.SRC function, when connected to a DRP device, the device preferentially charges the DRP.

The IP2369 supports various specifications of fast charge: PD2.0/PD3.0/PD3.1, QC2.0/QC3.0/QC3+, FCP, AFC, Apple.

IP2369 Supports identification of EMARK cables.

The IP2369 supports PD2.0, PD3.0, and PD3.1 output protocols, and supports a maximum of 45W power output.

IP2369 supports the identification of EMARK cables. Based on the identified cable information, the IP2369 broadcasts different PD packets. The PD packets in different power Settings are as follows:

Maximum output power	Output voltage and current
45W	5V/3A,9V/3A,12V/3A,15V/3A,20V/2.25A
36W	5V/3A,9V/3A,12V/3A,15V/2.4A,20V/1.8A
30W	5V/3A,9V/3A,12V/2.5A,15V/2A,20V/1.5A
27W	5V/3A,9V/3A,12V/2.25A,15V/1.8A,20V/1.35A
20W	5V/3A,9V/2.22A,12V/1.67A,15V/1.33A,20V/1A

The IP2369's USB-A1 and USB-C can support QC2.0/QC3.0/QC3+, FCP, AFC, as well as Apple's 2.4A mode and BC1.2 normal Android phone 1A mode via DP/DM pins.

11.3 Charge and Discharge Path Management

11.3.1 Standby & Light Load Shutdown

the discharge function is automatically enabled.

If the USB-C port is inserted into the charging power supply, the charging can be started directly.

If a USB-C UFP device is inserted into the USB-C or an electrical device is inserted into the USB-A1,

If there is a key action, it will be turned on when there is a load connection on the USB-A1 and USB-C, otherwise it will remain off.

In multi-port output mode, when the output current of any output outlet is less than about 80mA (MOS Rds_ON@15mohm), the port will be automatically closed after 16 seconds.

When multiple electrical devices are reduced to only one electrical device, after about 16s, all output outlets will be closed first, the high-voltage fast charge function will be opened, and then the output outlet of the last electrical device will be opened, in this way to reactivate the device to request fast charge.

When only one output outlet is opened, the total output power is less than 350mW for about 32s, the output and discharge functions will be closed, and the standby state will be entered.

Under the PD protocol, the light load shutdown time is 16 minutes.

11.3.2 Discharge

If IP2369 has no key action, only the output eloquence connected to the electrical equipment will be turned on; The output of unconnected devices remains closed.

Both USB-A1 and USB-C support the output fast charge protocol. However, because the scheme is a single inductance scheme, it can only support one voltage output, so only one output outlet can support fast charge output. When two outputs are used at the same time, the fast charge function is automatically turned off.

According to the schematic diagram of Typical Application, if any output outlet has entered the fast charge output mode, when other output outlets are inserted into the power device, all output outlets are closed first, the high voltage fast charge function is disabled, and then the output outlet with the device is opened. At this time, all outputs support only Apple and BC1.2 mode charging.

11.3.3 Charging

USB-C can be charged when plugged into the power supply, and supports automatic identification of the fast charge mode of the power supply, matching the appropriate charging voltage and charging current.

11.3.4 Charging while discharging

When the charging power and electrical equipment are connected at the same time, it automatically enters the charging and discharging mode. In this mode, the chip automatically turns off the internal fast charge input request. In order to ensure the normal charging of electrical equipment, the IP2369 will increase the charging undervoltage loop to more than 4.9V to ensure the priority of power supply to electrical equipment. When the VIO voltage is only 5V, open the discharge path to supply power to the electrical equipment; For safety reasons, if the VIO voltage is greater than 5.6V, the discharge path will not be opened.

In the process of charging and discharging, if the charging power is removed, the IP2369 will turn off the charging function and restart the discharge function to supply power to the electrical device. For safety reasons, but also to be able to reactivate the electrical equipment to request a fast charge, there will be a period of time during the conversion process when the output voltage drops to OV.

In the process of charging and discharging, if the power device is unplugged, the power device is full or stops pumping for about 16s, the IP2369 will automatically close the corresponding discharge path. When the discharge path is closed and the state returns to single charge mode, the charging undervoltage loop will be reduced, and the fast charge will be automatically re-applied to accelerate the charging of the mobile power supply.

11.4 Input and output maximum power setting

IP2369 determines the maximum power of input and output of the system by determining the resistance value of the PSET pin connection.

RPSET	Corresponding to the set maximum power PMAX
18k	45W
13k	36W
9.1k	30W
6.2k	27W
3.6k	20W

11.5 Set the number of batteries in series

IP2369 determines the number of batteries in series by determining the resistance value of BAT_NUM pin connection.

RBAT_NUM	Corresponding to the set number of batteries in series			
18k	6 串			
13k	5 串			
9.1k	4 串			
6.2k	3 串			
3.6k	2 串			

11.6 Battery type setting

IP2369 determines the battery type by determining the resistance value of the VSET pin connection.

RVSET	Corresponding battery type (full voltage of a single battery)
27k	4.4V
18k	4.35V
13k	4.3V
9.1k	4.2V
6.2k	4.1V
3.6k	3.65V

11.7 NTC function

IP2369 integrates the NTC function to detect the battery temperature. When IP2369 works, it generates a constant current source on the NTC pin and generates voltage with the external pull-down NTC thermistor. The chip determines the current battery temperature by detecting the voltage of the NTC pin internally.

* A 100nF capacitor in parallel with GND at the NTC pin should be placed close to the chip pin.

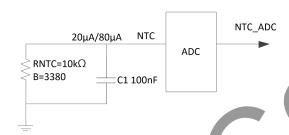


Figure 5 Comparison of battery NTC

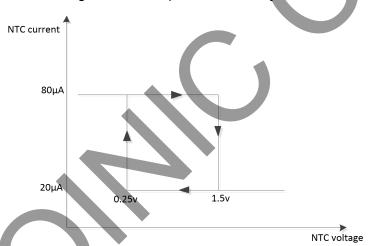


Figure 6 NTC voltage and outgoing current relationship

In order to accurately distinguish the temperature of the battery NTC, IP2369 adopts the current switching type NTC detection module. The chip detects the current output by the NTC pin and the voltage generated by the external pull-down NTC thermistor to determine the current battery temperature.

When the output current of the NTC pin is 80µA and the voltage of the NTC pin is detected to be higher than 1.5V, the output current of the NTC pin is adjusted to output 20µA.

When the output current of the NTC pin is $20\mu A$ and the voltage of the NTC pin is detected to be lower than 0.25V, the output current of the NTC pin is adjusted to output $80\mu A$. In the charging state:

When the output current of the NTC is 80μ A and the voltage of the detecting NTC pin is lower than 0.39V, the battery temperature is higher than 45 °C and the charging function stops.

When the output current of NTC is $20\mu A$ and the voltage of the detecting NTC pin is higher than 0.55V, the battery temperature is lower than 0 ° C and the charging function stops.

Charging state: NTC temperature below 0 degrees (0.55V) stop charging, 0~45 degrees between normal charging, temperature over 45 degrees (0.39V) stop charging.

Discharge state: When the temperature is lower than -20 degrees (1.39V), stop discharging, normal discharge between -20 degrees and 60 degrees, stop discharging above 60 degrees (0.24V);

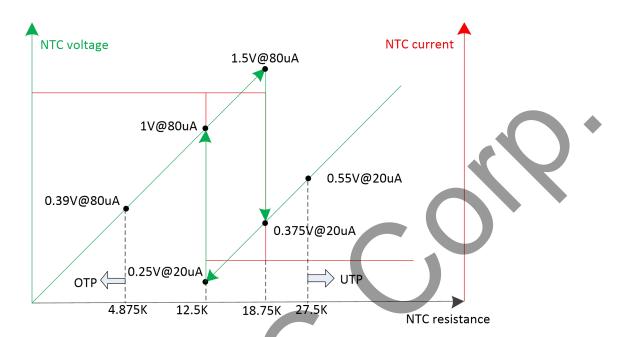


Figure 7 Relationship between NTC voltage and NTC resistance If the NTC function is not required in the solution, connect the NTC pin to the ground with a 10 k Ω resistor. Do not float the NTC pin or ground it directly.

11.8 Lamp display function

IP2369 Support 4, 2, and 1 battery indicator, the connection method is as follows.

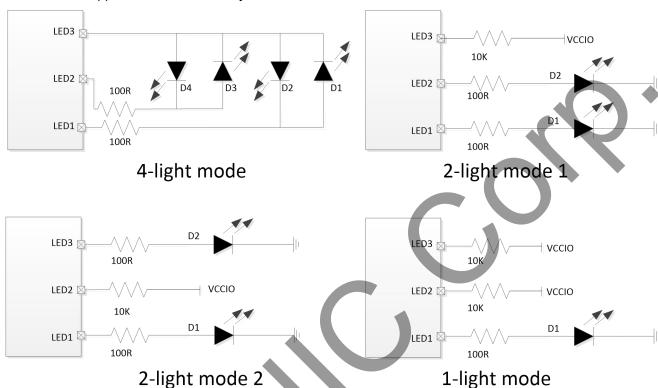


Figure 8 4, 2, 1LED connection mode

The display mode of 4 lights is:

When charging normally

Electricity C (%)	D1	D2	D3	D4
full	on	on	on on on	
75%≤C	on	on	on	0.5HzFlashing
50%≤C<75%	on	on	0.5HzFlashing	off
25%≤C<50%	on	0.5HzFlashing	off	off
C<25%	0.5HzFlashing	off	off	off

When discharging normally

Electricity C (%)	D1	D2	D3	D4
75%≤C	on	on on		on
50%≤C<75%	on	on	on	off
25%≤C<50%	on	on	off	off
C<25%	on	off	off	off

C=0	flash 4 times	off	off	off	
-----	---------------	-----	-----	-----	--

After flashing 4 times (200ms on and 200ms off), stopping the discharge.

The display mode of 2 lamp mode 1 is two-color lamp:

When charging normally

Electricity C (%)	D1	D2
full	off	on
66%≤C<100%	off	0.5HzFlashing
33%≤C<66%	0.5HzFlashing	0.5HzFlashing
C<33%	0.5HzFlashing	off

When discharging normally

Electricity C (%)	D1	D2
66%≤C<100%	off	on
33%≤C<66%	on	on
C<33%	on	off
C=0	flash 4 times	off

After flashing 4 times (250ms on and 250ms off), stopping the discharge.

The display mode of 2 lamp mode 2 is:

D1 is on during charging, D2 is off, D1 is off when fully charged, and D2 is on; when charging is abnormal, D1 and D2 flash at the same time (on for 250ms and off for 250ms)

D1 is always on during discharge, and when C=0, D1 flashes 4 times (on for 250ms and off for 250ms) and then stops discharging.

The display mode of 1 light mode is:

D1 flashes during charging (1s on and 1s off), when fully charged, D1 is always on; D1 flashes quickly when charging is abnormal (250ms on and 250ms off)

D1 is always on during discharge, and when C=0, D1 flashes 4 times (on for 250ms and off for 250ms) and then stops discharging.

11.9 EN key function

IP2369 supports button function. The connection mode of button is shown in Figure 9.

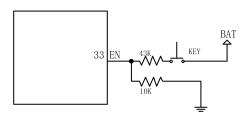


Figure 9 EN key connection mode

 $1.2V \le V_{EN} < 3.3V$ indicates a high level, $0 \le V_{EN} < 1.2V$ indicates a low level, and the EN voltage should not exceed 5V.

The EN pin high level duration is greater than 100ms, less than 2s, that is, short press action; After entering the Standby mode, short press will turn on the power indicator and enter the no-load state. If the charging and discharging device is detected, it will enter the corresponding charging and discharging state. In the no-load state, if no charging or discharging device is detected at the port for 10s C, it will enter the Standby mode. In the no-load state, press twice within 1s to shut down and enter the Standby mode, and turn off the power indicator display and discharge output.

If the EN pin high level lasts longer than 10s, the system resets.

The EN foot cannot be suspended in the air and must be pulled down to the ground with 10K resistance.

12 Application schematic diagram

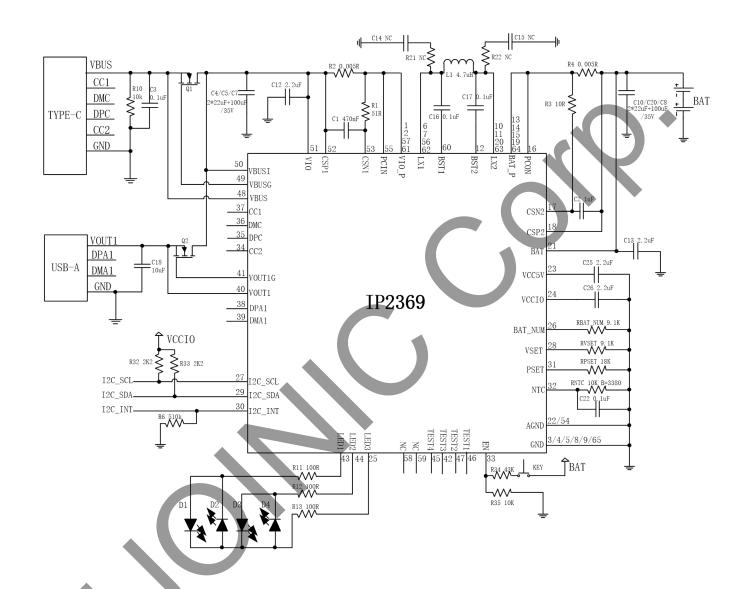


Figure 10 Application principle diagram of standard models

13 BOM

Num	Component	Model &	Location	Dosa	Domonk
Num	name	Specification	Location	ge	Remark
1	Patch IC	QFN60 IP2369	U1	1	
2	SMD capacitors	0603 100nF 10% 50V	C3,C16,C17,C22	4	
3	SMD capacitors	0603 470nF 10% 50V	C1	1	
4	SMD capacitors	0603 1µF 10% 35V	C2	1	
5	SMD capacitors	0603 2.2μF 10% 35V	C12,C13,C25,C2	4	
6	SMD capacitors	0805 10µF 10% 35V	C18		
7	SMD capacitors	1210 22µF 10% 35V	C4,C5,C10,C20	4	
8	Solid capacitor	100µF 35V 10%	C7,C8	2	
9	SMD resistor	1206 0.005R 1%	R2,R4	2	The sampling resistor requires a metal film resistor with high precision and low temperature
10	SMD resistor	0603 100R 5%	R11,R12,R13	3	
11	SMD resistor	0603 9.1K	RBAT_NUM	1	
12	SMD resistor	0603 18K	RPSET	1	
13	SMD resistor	0603 9.1K	RVSET	1	
14	SMD resistor	0603 10R 1%	R3	1	
15	SMD resistor	0603 43K	R34	1	
16	SMD resistor	0603 10K	R35,R10,RNTC	3	
17	SMD resistor	0603 51R	R1	1	
18	SMD LED	0603 LED	D1,D2,D3,D4	4	
19	SMD MOS	IP15N03M	Q1,Q2	2	
20	Lifting voltage inductance	4.7µH 9A R _{DC} <10mR	L1	1	
21	USB C	TYPE-C 座子	TYPE-C	1	
22	USB A	USB-A 座子	USB-A	1	
23	Tap switch	Tap switch	SW1	1	
24	SMD resistor	0603 510K	R6	1	
25	SMD capacitor	0603 3.3nF 10% 35V	C14,C15	2	NC, used for certification
26	SMD resistor	0603 2R	R21,R22	2	NC, used for certification

14 Package

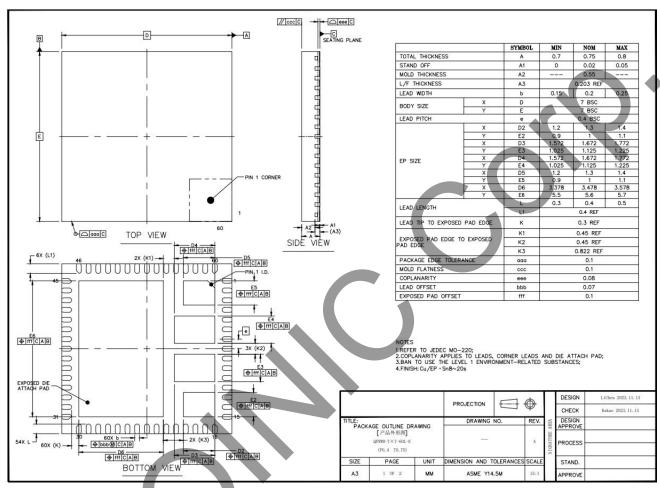


Figure 11 Package

15 Silkscreen

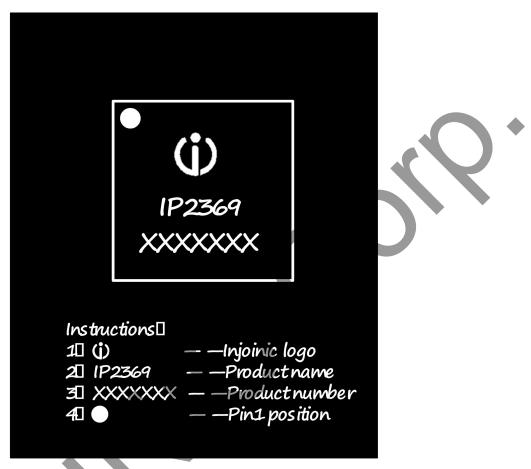


Figure 12 Silkscreen

16 IMPORTANT NOTICE

INJOINIC TECHNOLOGY and its subsidiaries reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to INJOINIC TECHNOLOGY's terms and conditions of sale supplied at the time of order acknowledgment.

INJOINIC TECHNOLOGY assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using INJOINIC TECHNOLOGY's components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of INJOINIC TECHNOLOGY's components in its applications, notwithstanding any applications-related information or support that may be provided by INJOINIC TECHNOLOGY. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify INJOINIC TECHNOLOGY and its representatives against any damages arising out of the use of any INJOINIC TECHNOLOGY's components in safety-critical applications.

Reproduction of significant portions of INJOINIC TECHNOLOGY's information in INJOINIC TECHNOLOGY's data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. INJOINIC TECHNOLOGY is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

INJOINIC TECHNOLOGY will update this document from time to time. The actual parameters of the product may vary due to different models or other items. This document voids all express and any implied warranties.

Resale of INJOINIC TECHNOLOGY's components or services with statements different from or beyond the parameters stated by INJOINIC TECHNOLOGY for that component or service voids all express and any implied warranties for the associated INJOINIC TECHNOLOGY's component or service and is an unfair and deceptive business practice. INJOINIC TECHNOLOGY is not responsible or liable for any such statements.